Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Polycystic Kidney Disease Ryanodine Receptor Domain (PKDRR) Proteins in Oomycetes.

Identifieur interne : 000085 ( Main/Exploration ); précédent : 000084; suivant : 000086

Polycystic Kidney Disease Ryanodine Receptor Domain (PKDRR) Proteins in Oomycetes.

Auteurs : Limian Zheng [Irlande (pays)] ; Barbara Doyle Prestwich [Irlande (pays)] ; Patrick T. Harrison [Irlande (pays)] ; John J. Mackrill [Irlande (pays)]

Source :

RBID : pubmed:32708691

Abstract

In eukaryotes, two sources of Ca2+ are accessed to allow rapid changes in the cytosolic levels of this second messenger: the extracellular medium and intracellular Ca2+ stores, such as the endoplasmic reticulum. One class of channel that permits Ca2+ entry is the transient receptor potential (TRP) superfamily, including the polycystic kidney disease (PKD) proteins, or polycystins. Channels that release Ca2+ from intracellular stores include the inositol 1,4,5-trisphosphate/ryanodine receptor (ITPR/RyR) superfamily. Here, we characterise a family of proteins that are only encoded by oomycete genomes, that we have named PKDRR, since they share domains with both PKD and RyR channels. We provide evidence that these proteins belong to the TRP superfamily and are distinct from the ITPR/RyR superfamily in terms of their evolutionary relationships, protein domain architectures and predicted ion channel structures. We also demonstrate that a hypothetical PKDRR protein from Phytophthora infestans is produced by this organism, is located in the cell-surface membrane and forms multimeric protein complexes. Efforts to functionally characterise this protein in a heterologous expression system were unsuccessful but support a cell-surface localisation. These PKDRR proteins represent potential targets for the development of new "fungicides", since they are of a distinctive structure that is only found in oomycetes and not in any other cellular organisms.

DOI: 10.3390/pathogens9070577
PubMed: 32708691
PubMed Central: PMC7399828


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Polycystic Kidney Disease Ryanodine Receptor Domain (PKDRR) Proteins in Oomycetes.</title>
<author>
<name sortKey="Zheng, Limian" sort="Zheng, Limian" uniqKey="Zheng L" first="Limian" last="Zheng">Limian Zheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology, School of Medicine, University College Cork, T12 XF62 Cork, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>Department of Physiology, School of Medicine, University College Cork, T12 XF62 Cork</wicri:regionArea>
<wicri:noRegion>T12 XF62 Cork</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Prestwich, Barbara Doyle" sort="Prestwich, Barbara Doyle" uniqKey="Prestwich B" first="Barbara Doyle" last="Prestwich">Barbara Doyle Prestwich</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological, Earth and Environmental Sciences, University College Cork, T23 TK30 Cork, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>School of Biological, Earth and Environmental Sciences, University College Cork, T23 TK30 Cork</wicri:regionArea>
<wicri:noRegion>T23 TK30 Cork</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Harrison, Patrick T" sort="Harrison, Patrick T" uniqKey="Harrison P" first="Patrick T" last="Harrison">Patrick T. Harrison</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology, School of Medicine, University College Cork, T12 XF62 Cork, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>Department of Physiology, School of Medicine, University College Cork, T12 XF62 Cork</wicri:regionArea>
<wicri:noRegion>T12 XF62 Cork</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mackrill, John J" sort="Mackrill, John J" uniqKey="Mackrill J" first="John J" last="Mackrill">John J. Mackrill</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology, School of Medicine, University College Cork, T12 XF62 Cork, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>Department of Physiology, School of Medicine, University College Cork, T12 XF62 Cork</wicri:regionArea>
<wicri:noRegion>T12 XF62 Cork</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32708691</idno>
<idno type="pmid">32708691</idno>
<idno type="doi">10.3390/pathogens9070577</idno>
<idno type="pmc">PMC7399828</idno>
<idno type="wicri:Area/Main/Corpus">000122</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000122</idno>
<idno type="wicri:Area/Main/Curation">000122</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000122</idno>
<idno type="wicri:Area/Main/Exploration">000122</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Polycystic Kidney Disease Ryanodine Receptor Domain (PKDRR) Proteins in Oomycetes.</title>
<author>
<name sortKey="Zheng, Limian" sort="Zheng, Limian" uniqKey="Zheng L" first="Limian" last="Zheng">Limian Zheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology, School of Medicine, University College Cork, T12 XF62 Cork, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>Department of Physiology, School of Medicine, University College Cork, T12 XF62 Cork</wicri:regionArea>
<wicri:noRegion>T12 XF62 Cork</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Prestwich, Barbara Doyle" sort="Prestwich, Barbara Doyle" uniqKey="Prestwich B" first="Barbara Doyle" last="Prestwich">Barbara Doyle Prestwich</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological, Earth and Environmental Sciences, University College Cork, T23 TK30 Cork, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>School of Biological, Earth and Environmental Sciences, University College Cork, T23 TK30 Cork</wicri:regionArea>
<wicri:noRegion>T23 TK30 Cork</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Harrison, Patrick T" sort="Harrison, Patrick T" uniqKey="Harrison P" first="Patrick T" last="Harrison">Patrick T. Harrison</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology, School of Medicine, University College Cork, T12 XF62 Cork, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>Department of Physiology, School of Medicine, University College Cork, T12 XF62 Cork</wicri:regionArea>
<wicri:noRegion>T12 XF62 Cork</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mackrill, John J" sort="Mackrill, John J" uniqKey="Mackrill J" first="John J" last="Mackrill">John J. Mackrill</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physiology, School of Medicine, University College Cork, T12 XF62 Cork, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>Department of Physiology, School of Medicine, University College Cork, T12 XF62 Cork</wicri:regionArea>
<wicri:noRegion>T12 XF62 Cork</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Pathogens (Basel, Switzerland)</title>
<idno type="ISSN">2076-0817</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In eukaryotes, two sources of Ca
<sup>2+</sup>
are accessed to allow rapid changes in the cytosolic levels of this second messenger: the extracellular medium and intracellular Ca
<sup>2+</sup>
stores, such as the endoplasmic reticulum. One class of channel that permits Ca
<sup>2+</sup>
entry is the transient receptor potential (TRP) superfamily, including the polycystic kidney disease (PKD) proteins, or polycystins. Channels that release Ca
<sup>2+</sup>
from intracellular stores include the inositol 1,4,5-trisphosphate/ryanodine receptor (ITPR/RyR) superfamily. Here, we characterise a family of proteins that are only encoded by oomycete genomes, that we have named PKDRR, since they share domains with both PKD and RyR channels. We provide evidence that these proteins belong to the TRP superfamily and are distinct from the ITPR/RyR superfamily in terms of their evolutionary relationships, protein domain architectures and predicted ion channel structures. We also demonstrate that a hypothetical PKDRR protein from
<i>Phytophthora infestans</i>
is produced by this organism, is located in the cell-surface membrane and forms multimeric protein complexes. Efforts to functionally characterise this protein in a heterologous expression system were unsuccessful but support a cell-surface localisation. These PKDRR proteins represent potential targets for the development of new "fungicides", since they are of a distinctive structure that is only found in oomycetes and not in any other cellular organisms.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32708691</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">2076-0817</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jul</Month>
<Day>16</Day>
</PubDate>
</JournalIssue>
<Title>Pathogens (Basel, Switzerland)</Title>
<ISOAbbreviation>Pathogens</ISOAbbreviation>
</Journal>
<ArticleTitle>Polycystic Kidney Disease Ryanodine Receptor Domain (PKDRR) Proteins in Oomycetes.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E577</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/pathogens9070577</ELocationID>
<Abstract>
<AbstractText>In eukaryotes, two sources of Ca
<sup>2+</sup>
are accessed to allow rapid changes in the cytosolic levels of this second messenger: the extracellular medium and intracellular Ca
<sup>2+</sup>
stores, such as the endoplasmic reticulum. One class of channel that permits Ca
<sup>2+</sup>
entry is the transient receptor potential (TRP) superfamily, including the polycystic kidney disease (PKD) proteins, or polycystins. Channels that release Ca
<sup>2+</sup>
from intracellular stores include the inositol 1,4,5-trisphosphate/ryanodine receptor (ITPR/RyR) superfamily. Here, we characterise a family of proteins that are only encoded by oomycete genomes, that we have named PKDRR, since they share domains with both PKD and RyR channels. We provide evidence that these proteins belong to the TRP superfamily and are distinct from the ITPR/RyR superfamily in terms of their evolutionary relationships, protein domain architectures and predicted ion channel structures. We also demonstrate that a hypothetical PKDRR protein from
<i>Phytophthora infestans</i>
is produced by this organism, is located in the cell-surface membrane and forms multimeric protein complexes. Efforts to functionally characterise this protein in a heterologous expression system were unsuccessful but support a cell-surface localisation. These PKDRR proteins represent potential targets for the development of new "fungicides", since they are of a distinctive structure that is only found in oomycetes and not in any other cellular organisms.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Limian</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Physiology, School of Medicine, University College Cork, T12 XF62 Cork, Ireland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Prestwich</LastName>
<ForeName>Barbara Doyle</ForeName>
<Initials>BD</Initials>
<AffiliationInfo>
<Affiliation>School of Biological, Earth and Environmental Sciences, University College Cork, T23 TK30 Cork, Ireland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Harrison</LastName>
<ForeName>Patrick T</ForeName>
<Initials>PT</Initials>
<Identifier Source="ORCID">0000-0002-2319-0949</Identifier>
<AffiliationInfo>
<Affiliation>Department of Physiology, School of Medicine, University College Cork, T12 XF62 Cork, Ireland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mackrill</LastName>
<ForeName>John J</ForeName>
<Initials>JJ</Initials>
<Identifier Source="ORCID">0000-0003-2473-129X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Physiology, School of Medicine, University College Cork, T12 XF62 Cork, Ireland.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Pathogens</MedlineTA>
<NlmUniqueID>101596317</NlmUniqueID>
<ISSNLinking>2076-0817</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Phytophthora infestans</Keyword>
<Keyword MajorTopicYN="N">biochemistry</Keyword>
<Keyword MajorTopicYN="N">calcium</Keyword>
<Keyword MajorTopicYN="N">evolution</Keyword>
<Keyword MajorTopicYN="N">inositol 1,4,5-trisphosphate receptor</Keyword>
<Keyword MajorTopicYN="N">oomycete</Keyword>
<Keyword MajorTopicYN="N">polycystic kidney disease channel</Keyword>
<Keyword MajorTopicYN="N">ryanodine receptor</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>06</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>07</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32708691</ArticleId>
<ArticleId IdType="pii">pathogens9070577</ArticleId>
<ArticleId IdType="doi">10.3390/pathogens9070577</ArticleId>
<ArticleId IdType="pmc">PMC7399828</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Commun. 2018 Mar 22;9(1):1192</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29567962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pflugers Arch. 2005 Oct;451(1):264-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15889307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2016 Aug 5;371(1700):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27377729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2016 Apr 05;7:123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27092083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2000 Feb;25(2):48-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10664581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Biophys Mol Biol. 2010 Jan;102(1):1-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20026163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1989 Sep;257(3 Pt 1):C504-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2551173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Protistol. 2013 Aug;49(3):328-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23219323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2018 Jun 1;35(6):1547-1549</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29722887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2011 Oct 11;7:539</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21988835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18688-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18003909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2013 Mar;95(3):568-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22960205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2006 Oct 27;4:38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17069655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2017 May 15;595(10):3053-3062</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27859266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Apr 29;7:615</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27199944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Aug 04;7:1236</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27540377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Calcium. 2003 May-Jun;33(5-6):419-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12765687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2005 Jan;3(1):47-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15608699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2012;740:159-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22453942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Apr 19;8:610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28469602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Biol Regul. 2015 Jan;57:217-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25497594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Oct 01;8(10):e76264</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24098458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Apr 17;290(16):10544-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25716316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Mar;17(3):330-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15000400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4389-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17360534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 May 23;289(21):14498-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24695729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2013 May 15;126(Pt 10):2141-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23729741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jan 4;46(D1):D493-D496</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29040681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1985 Mar 25;260(6):3440-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3838314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2000 Oct;1(1):11-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11413485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2014 May 12;14:101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24884411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2016 Jan;17(1):127-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26507366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D200-D203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2010 Dec;2(12):a004010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20980441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem Mol Toxicol. 2009 Sep-Oct;23(5):324-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19827036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1987 Aug;84(16):5630-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3039498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2007;592:275-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17278372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2012 Jan;29(1):91-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21680871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Physiol. 2017 Apr 3;149(4):483-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28330839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Feb 14;6(2):e16725</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21340037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Dec;7(12):2133-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18931042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2017 Feb 23;18(1):198</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28228125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2019 Nov 1;35(21):4400-4401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30949679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jan 1;30(1):383-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1965 Nov;41(2):275-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5866132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Feb 1;283(5):2939-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18025085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 1996 Feb;69(2):180-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8907619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Data. 2020 Jan 21;7(1):29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31964893</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Irlande (pays)</li>
</country>
</list>
<tree>
<country name="Irlande (pays)">
<noRegion>
<name sortKey="Zheng, Limian" sort="Zheng, Limian" uniqKey="Zheng L" first="Limian" last="Zheng">Limian Zheng</name>
</noRegion>
<name sortKey="Harrison, Patrick T" sort="Harrison, Patrick T" uniqKey="Harrison P" first="Patrick T" last="Harrison">Patrick T. Harrison</name>
<name sortKey="Mackrill, John J" sort="Mackrill, John J" uniqKey="Mackrill J" first="John J" last="Mackrill">John J. Mackrill</name>
<name sortKey="Prestwich, Barbara Doyle" sort="Prestwich, Barbara Doyle" uniqKey="Prestwich B" first="Barbara Doyle" last="Prestwich">Barbara Doyle Prestwich</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000085 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000085 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32708691
   |texte=   Polycystic Kidney Disease Ryanodine Receptor Domain (PKDRR) Proteins in Oomycetes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32708691" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024